

AW-CU570-EVB

Wireless MCU with Integrated Tri-radio Wi-Fi 6 + Bluetooth Low Energy 5.3 /802.15.4

15mm x 28mm LGA Module

<u>User Guide</u>

Rev. 01

(For Standard)

Revision History

Version	Revision Date	Description	Initials	Approved
01	2024/01/22	Initial Version	Roger Liu	N.C. Chen

1.System Setup

1-1. Hardware Requirements

- AW-CU570-EVB (evaluation board of AW-CU570)
- SDIO/UART interface supported (USB port needed)
- Windows system(OS later than Windows) for Labtool.
- Vector Signal Analyzer/WLAN analyzer for transmit measurements.
- WLAN signal generator for receiver measurements.
- RF isolation chamber for receive measurements.
- RF attenuators
- RF cable

AW-CU570-EVB

- 1.1.1 For VIO_BRD supply For VIO_BRD supply VDDIO(1.8V), please connect JP16(2-3). For VIO_BRD supply VDDIO(3.3V), please connect JP16(1-2).
- 1.1.2 For Config Host Boot (ON DIP side is 0) For ISP boot, please connect U38(1110). For Boot from QSPI Flash, please connect U38(1111).

1-2. Software package requirement

- a. USB-UART driver
- b. MCUXpressoIDE_11.6.0_8187.exe
- c. MFG or Normal FW image

1-2-1. Windows PC set up (USB-UART)

After download the SW package from AzureWave contact window, please build the driver first.

Install MCUXpressoIDE_11.6.0_8187.exe MCUXpressoIDE_11.6.0_8187.exe

Open the MFG-RW61X-MF-BRG-U16-WIN-X86-2.0.0.2.0-18.80.2.p78.6 and you can see below contents.

- Calibration_Data
- 📜 Fwlmage
- 📜 labtool
- COPYING
- A MFG-RW61X-MF-BRG-U16-WIN-X86-2.0.0.2.0-18.80.2.p78.6-Release-Notes.pdf
- SCR_MFG-RW61X-MF-BRG-U16-WIN-X86-2.0.0.2.0-18.80.2.p78.6.txt

Go into A2 folder under the FwImage folder you can see the files below, copy all files to C:\nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries

- sprog_flash_RW610_A2.bat
- prog flash RW610 A2.jlink
- sprog_flash_RW612_A2.bat
- rw61xn_sb_mfg_fw_cpu2_ble_a2.bin
- rw61xn_sb_mfg_fw_cpu2_combo_a2.bin
- rw61xw_sb_mfg_fw_cpu1_a2.bin
- uart_wifi_ble_15d4_bridge.bin
- uart_wifi_ble_bridge.bin

Connect USB-to-UART type C port to your PC, if the com port is not recognized Number, must install the Driver "PL23XX_Prolific DriverInstaller v408"

Install the driver manually. You can get the driver from ProfilicI's web site. https://www.prolific.com.tw/US/ShowProduct.aspx?p_id=225&pcid=41

The installation is successful, find the com port number.

✓ ∰ 連接埠 (COM 和 LPT) Prolific PL2303GC USB Serial COM Port (COM35)

1-3. Start Write firmware image and DUT testing

1-3-1 Windows PC side (Normal Mode operation)

Switch U38 to ISP boot mode and then connect USB-to-UART type C port to your PC. Execute the command in C:\nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries and edit your com port number.

blhost.exe -p COM5 -t 3 get-property 1 blhost.exe -p COM5 -t 60000 fill-memory 0x20001000 0x4 0xC0000008 blhost.exe -p COM5 -t 60000 configure-memory 0x9 0x20001000 blhost.exe -p COM5 -t 60000 flash-erase-region 0x8000000 0x800000 blhost.exe -p COM5 -t 60000 write-memory 0x8400000 images\rw610 sb wifi v1.bin blhost.exe -p COM5 -t 60000 write-memory 0x8540000 images\rw610 sb ble v1.bin blhost.exe -p COM5 -t 60000 write-memory 0x8000000 images\rdrw612qfn wifi cli.bin

Execution command

And automatically close the window after writing.

:\nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries>blhost.exe -p COM16 -t 3 get-propertyl
Ping responded in 1 attempt(s)
Inject command 'get-property'
Response status = 0 (0x0) Success.
Response word 1 = 1258488064 (0x4b030100)
Unnoot Vorsion - K2 1.0 Current Version = K3.1.0 :\nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries>blhost.exe -p COM16 -t 60000 fill-memory 0x20001000 0x4 0xC0000008 Ping responded in 1 attempt(s) Inject command 'fill-memory' Successful generic response to command 'fill-memory' Response status = 0 (0x0) Success. \nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries>blhost.exe -p COM16 -t 60000 configure-memory 0x9 0x20001000 Ping responded in 1 attempt(s) Inject command 'configure-memory' Successful generic response to command 'configure-memory' esponse status = 0 (0x0) Success. :\nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries>blhost.exe -p COM16 -t 60000 flash-erase-region 0x8000000 0x800000 Ping responded in 1 attempt(s) Enject command 'flash-erase-region' Response status = 0 (0x0) Success. :\nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries>REM blhost.exe -p COM -t 60000 write-memory 0x8400000 payload_cpu1_wifi.bin :\nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries>REM blhost.exe -p COM -t 60000 write-memory 0x8540000 payload_cpu2_ble.bin \nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries>REM blhost.exe -p COM -t 60000 write-memory 0x8000000 uart_MFG_bridge_wlan_ble_cpu3withfcb.bir

5

Here is a Normal Mode operation example; Please switch U38 to Boot from QSPI Flash and restart DUT after programming flash

Open the Terminal window and set com port 17 and baud-rate as 115200

Execute the command: wlan-version

Port Name: COM17 V Bau	id Rate: 115200 V Close
Vlan-version Wlan-version WLAN Driver Version WLAN Firmware Version	: v1.3.r34.p49.2 : rw610w-V1, IMU, FP91, 18.91.2.p32.1, PVE_FIX 1

Execute the command: wlan-scan

6

Execute the command: wlan-add 1 ssid CMW-AP Execute the command: waln-connect 1

Connect to tester CMW-AP and show DUT information.

WLAN Signaling 1 - V3.8.20 - Base V 3.8.13	
onnection Status	
Cell	Common Settings Frequency Power
Connection Status Associated RX Power Indicator 26dBm In Range	TX Burst Power RX Expected PEP Approximate RX Burst Power
Event Log	Record I
09:19:43 AE:5D:2D:8F:6F:95 Probed 09:18:47 F8:54:F6:69:D2:12 Associated 09:18:38 F8:54:F6:69:D2:12 Probed 09:18:38 F8:54:F6:69:D2:12 Probed 09:18:38 F8:54:F6:69:D2:12 Probed 09:18:38 F8:54:F6:69:D2:12 Probed	Connection Settings Security Disabled
DUT / UE Into	Beacon Interval (TLI)
MAC F8:54:F6:69:D2:12 UE IPv4 100.100.100.10 CMW IPv4 100.100.100.10 UE IPv6 fc01:abab:cdcd.efe0:fa54:161t:fe69:d2 CMW IPv6 1e80::201:2ff:fe03:405	Packet Generator Data Meas Control PG1 PG2 Enable IV I
RX Statistics	Protocol ICMP ICMP

1-3-2. Windows PC side (MFG Mode operation)

Switch U38 to ISP boot mode and then connect USB-to-UART type C port to your PC. Execute the command in C:\nxp\MCUXpressoIDE_11.6.0_8187\ide\binaries

and edit your com port number. blhost.exe -p COM11 -t 3 get-property 1 blhost.exe -p COM11 -t 60000 fill-memory 0x20001000 0x4 0xC0000008 blhost.exe -p COM11 -t 60000 configure-memory 0x9 0x20001000 blhost.exe -p COM11 -t 60000 flash-erase-region 0x8000000 0x800000 blhost.exe -p COM11 -t 60000 write-memory 0x8400000 rw610w_mfg_sfw_cpu1.bin blhost.exe -p COM11 -t 60000 write-memory 0x8540000 rw610n_mfg_sfw_cpu2.bin blhost.exe -p COM11 -t 60000 write-memory 0x8000400 uart_wifi_ble_bridge.bin

Execution command

And automatically close the window after writing.

1-3-3. Windows PC side

Open the labtool under MFG-RW61X-MF-BRG-U16-WIN-X86-2.0.0.2.0-18.80.2.p78.6 can to see the following content.

S AddCalDLL.dll	2023/12/1 下午 09:10	應用程式擴充	1,140 KB
DutApiSisoApApp_RW610.exe	2023/12/1 下午 09:10	應用程式	390 KB
DutApiSisoApAppUartDII.dll	2023/12/1 下午 09:10	應用程式擴充	543 KB
🕅 DutApiSisoApAppUartDII.lib	2023/12/1 下午 09:10	LIB 檔案	157 KB
🛐 SetUp.ini	2023/12/19 上午 11:57	組態設定	6 KB
Test.txt	2023/12/19 下午 12:00	文字文件	2 KB
TF_Config_20MHz.txt	2023/12/1 下午 09:10	文字文件	3 K B

Edit the "SetUp.ini" file as shown in the lines highlighted in RED below.

a. The setup DutlpAddress will be the COM PORT address of your target.

[COMSET]

ComNo = 9

BaudRate = 115200

byParity = 0

byStopBits = 1

byByteSize = 8

- b. The setup **NO_EEPROM** is the storage type to get/set function. [DutInitSet]_{*'}
 - ;0 EEPROM support.
 - ;1 NO_EEPROM support.

;2 - OTP support.

NO EEPROM=2

- 1 NO_EEPROM support → Set storage type to .conf calibration file in labtool folder.
- 2 OTP support → Set storage type to OTP in DUT

First make sure the switch is in read mode.

Then you can double click "DutApiSisoApApp_RW610.exe" to enter labtool as below picture.

E:\dll_2g\DutApiSisoApApp_RW610.exe	_	×
Name: Dut labtool Version: 1.0.0.0.6 Date: Jul 25 2022 (17:37:29)		^
Note:		
1. ====================================		
Enter CMD 99 to Exit		
Enter option: 🗕		

2.RF Command

As the information showed on your screen, please enter these commands below to start your test.

Command: 1 Wi-Fi testing

Command. Z BI testing		
E:\dll_2g\DutApiSisoApApp_RW610.exe	—	×
Name: Dut labtool Version: 1.0.0.0.6 Date: Jul 25 2022 (17:37:29)		^
Note:		
1. ====================================		
Enter CMD 99 to Exit		
Enter option: _		
		~

2-1. Generate 802.11a/b/g/n Packet commands

a. Tx on CH 6 at 15 dBm with a CCK-11Mbps data rate in 20 MHz BW mode

44 2 35 0 0 6 11 0 112 0 0 12 0 6 35 0 1 4 15	<pre>//Set storage type to OTP // Stop Tx // Set 2.4G mode // Set to 20 MHz BW // Set to ch6 // Enable Output Power at 15 dBm with CCK-11M Data Rate with b mode</pre>
b. Tx on CH 6 at 12 dBr	n with an OFDM-54Mbps data rate in 20 MHz BW mode
44 2 35 0 0 6 11 0 112 0 0 12 0 6 35 0 1 13 12	<pre>//Set storage type to OTP // Stop Tx // Set 2.4G mode // Set to 20 MHz BW // Set to ch6 // Enable Output Power with at 12 dBm OFDM-54M Data Rate with g mode</pre>

c. Tx on CH 6 at 10 dBm with a MCS0 Data rate in 20 MHz BW mode

44 2	//Set storage type to OTP
35 0	// Stop Tx
6 11 0	// Set 2.4G mode
112 0 0	// Set to 20 MHz BW
1206	// Set to ch6
35 0 1 15 10	// Enable Output Power at 10 dBm with MCS0 Data Rate with n mode

d. Tx on CH 36 at 16 dBm with a OFDM-54Mbps rate in 20 MHz BW Mode

44 2	//Set storage type to OTP
35 0 0	// Stop Tx
630	// Set 5G mode
112 0 0	// Set to 20 MHz BW
12 0 36	// Set to ch36
35 0 1 13 16	// Enable Output Power at 16 dBm with OFDM-54M Data Rate with a mode

Data rate set up table

B mode & G mode:

1Mbps	2Mbps	5.5Mbps	11Mbps	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps
1	2	3	4	6	7	8	9	10
36Mbps	48Mbps	54Mbps						
11	12	13						

N mode:

MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
15	16	17	18	19	20	21	22	

AC mode:

VHT Data Rates:

1100 for VHT_SS1_MCS0	1101 for VHT_SS1_MCS1	1102 for VHT_SS1_MCS2
1103 for VHT_SS1_MCS3	1104 for VHT_SS1_MCS4	1105 for VHT_SS1_MCS5
1106 for VHT_SS1_MCS6	1107 for VHT_SS1_MCS7	1108 for VHT_SS1_MCS8
1109 for VHT_SS1_MCS9		

AX mode:

HE Data Rates:

2100 for HE_SS1_MCS0	2101 for HE_SS1_MCS1	2102 for HE_SS1_MCS2
2103 for HE_SS1_MCS3	2104 for HE_SS1_MCS4	2105 for HE_SS1_MCS5
2107 for HE_SS1_MCS7	2108 for HE_SS1_MCS8	2109 for HE_SS1_MCS9
2110 for HE_SS1_MCS10	2111 for HE_SS1_MCS11	

2-2. Test RX sensitivity Commands

a. Rx on CH 6 in 20 MHz BW Mode

44 2	//Set storage type to OTP
35 0 0	// Stop Tx
6 11 0	// Set 2.4G
112 0 0	// Set to 20 MHz BW
1206	// Set to CH 6
31 0	<pre>// Clear all the received packets</pre>
32 0	// Get Rx Packet Count and then clear the Rx packet counter

12

2-3 Others Commands

- (1) **Command 45** \rightarrow Check the MAC
- (2) **Command 99** \rightarrow Quit the test mode/ Quit the MFG tool

3. EVB schematic

Power Entry with reverse polarity and over-voltage protection

15

16

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

4. Placement

Top View